Search results for "Character table"

showing 10 items of 25 documents

Landau's theorem and the number of conjugacy classes of zeros of characters

2021

Abstract Motivated by a 2004 conjecture by the author and J. Sangroniz, Y. Yang has recently proved that if G is solvable then the index in G of the 8th term of the ascending Fitting series is bounded in terms of the largest number of zeros in a row in the character table of G. In this note, we prove this result for arbitrary finite groups and propose a stronger form of the 2004 conjecture. We conclude the paper showing some possible ways to prove this strengthened conjecture.

Algebra and Number TheoryIndex (economics)ConjectureSeries (mathematics)010102 general mathematicsTerm (logic)01 natural sciencesCombinatoricsConjugacy classCharacter tableBounded function0103 physical sciences010307 mathematical physics0101 mathematicsMathematicsJournal of Algebra
researchProduct

Groups with exactly one irreducible character of degree divisible byp

2014

Let [math] be a prime. We characterize those finite groups which have precisely one irreducible character of degree divisible by [math] .

AlgebraPure mathematicsAlgebra and Number TheoryCharacter (mathematics)character degreesCharacter tableDegree (graph theory)characters20C15Character groupfinite groupsMathematicsAlgebra & Number Theory
researchProduct

Groups with a small average number of zeros in the character table

2021

Abstract We classify finite groups with a small average number of zeros in the character table.

CombinatoricsAlgebra and Number TheoryCharacter tableFOS: MathematicsGroup Theory (math.GR)Mathematics - Group TheoryMathematics
researchProduct

On the number of zeros in the columns of the character table of a group

2004

CombinatoricsAlgebra and Number TheoryCharacter tableGroup (mathematics)MathematicsJournal of Algebra
researchProduct

Sylow normalizers and character tables, II

2002

Suppose thatG is a finitep-solvable group and letPe Syl p (G). In this note, we prove that the character table ofG determines ifN G(itP)/P is abelian.

CombinatoricsDiscrete mathematicsCharacter tableGroup (mathematics)General MathematicsSylow theoremsAbelian groupAlgebra over a fieldMathematicsIsrael Journal of Mathematics
researchProduct

BOUNDING THE NUMBER OF IRREDUCIBLE CHARACTER DEGREES OF A FINITE GROUP IN TERMS OF THE LARGEST DEGREE

2013

We conjecture that the number of irreducible character degrees of a finite group is bounded in terms of the number of prime factors (counting multiplicities) of the largest character degree. We prove that this conjecture holds when the largest character degree is prime and when the character degree graph is disconnected.

CombinatoricsDiscrete mathematicsFinite groupOrientation characterAlgebra and Number TheoryCharacter (mathematics)Degree (graph theory)Character tableApplied MathematicsPrime factorCharacter groupPrime (order theory)MathematicsJournal of Algebra and Its Applications
researchProduct

Central Units, Class Sums and Characters of the Symmetric Group

2010

In the search for central units of a group algebra, we look at the class sums of the group algebra of the symmetric group S n in characteristic zero, and we show that they are units in very special instances.

CombinatoricsDiscrete mathematicsSymmetric algebraAlgebra and Number TheoryCharacter tableSymmetric groupQuaternion groupAlternating groupGroup algebraPermutation groupGroup ringMathematicsCommunications in Algebra
researchProduct

The minimal number of characters over a normal p-subgroup

2007

Abstract If N is a normal p-subgroup of a finite group G and θ ∈ Irr ( N ) is a G-invariant irreducible character of N, then the number | Irr ( G | θ ) | of irreducible characters of G over θ is always greater than or equal to the number k p ′ ( G / N ) of conjugacy classes of G / N consisting of p ′ -elements. In this paper, we investigate when there is equality.

CombinatoricsFinite groupAlgebra and Number TheoryCharacter (mathematics)Brauer's theorem on induced charactersConjugacy classCharacter tableCharactersCounting charactersFinite groupsNormal p-subgroupsMathematicsJournal of Algebra
researchProduct

Finite Group Elements where No Irreducible Character Vanishes

1999

AbstractIn this paper, we consider elements x of a finite group G with the property that χ(x)≠0 for all irreducible characters χ of G. If G is solvable and x has odd order, we show that x must lie in the Fitting subgroup F(G).

CombinatoricsFinite groupAlgebra and Number TheoryCharacter (mathematics)Character tableOrder (group theory)(gK)-moduleFitting subgroupMathematicsJournal of Algebra
researchProduct

Real constituents of permutation characters

2022

Abstract We prove a broad generalization of a theorem of W. Burnside about the existence of real characters of finite groups to permutation characters. If G is a finite group, under the necessary hypothesis of O 2 ′ ( G ) = G , we can also give some control on the parity of multiplicities of the constituents of permutation characters (a result that needs the Classification of Finite Simple Groups). Along the way, we give a new characterization of the 2-closed finite groups using odd-order real elements of the group. All this can be seen as a contribution to Brauer's Problem 11 which asks how much information about subgroups of a finite group can be determined by the character table.

CombinatoricsFinite groupAlgebra and Number TheoryCharacter tableClassification of finite simple groupsParity (mathematics)MathematicsJournal of Algebra
researchProduct