Search results for "Character table"
showing 10 items of 25 documents
Landau's theorem and the number of conjugacy classes of zeros of characters
2021
Abstract Motivated by a 2004 conjecture by the author and J. Sangroniz, Y. Yang has recently proved that if G is solvable then the index in G of the 8th term of the ascending Fitting series is bounded in terms of the largest number of zeros in a row in the character table of G. In this note, we prove this result for arbitrary finite groups and propose a stronger form of the 2004 conjecture. We conclude the paper showing some possible ways to prove this strengthened conjecture.
Groups with exactly one irreducible character of degree divisible byp
2014
Let [math] be a prime. We characterize those finite groups which have precisely one irreducible character of degree divisible by [math] .
Groups with a small average number of zeros in the character table
2021
Abstract We classify finite groups with a small average number of zeros in the character table.
On the number of zeros in the columns of the character table of a group
2004
Sylow normalizers and character tables, II
2002
Suppose thatG is a finitep-solvable group and letPe Syl p (G). In this note, we prove that the character table ofG determines ifN G(itP)/P is abelian.
BOUNDING THE NUMBER OF IRREDUCIBLE CHARACTER DEGREES OF A FINITE GROUP IN TERMS OF THE LARGEST DEGREE
2013
We conjecture that the number of irreducible character degrees of a finite group is bounded in terms of the number of prime factors (counting multiplicities) of the largest character degree. We prove that this conjecture holds when the largest character degree is prime and when the character degree graph is disconnected.
Central Units, Class Sums and Characters of the Symmetric Group
2010
In the search for central units of a group algebra, we look at the class sums of the group algebra of the symmetric group S n in characteristic zero, and we show that they are units in very special instances.
The minimal number of characters over a normal p-subgroup
2007
Abstract If N is a normal p-subgroup of a finite group G and θ ∈ Irr ( N ) is a G-invariant irreducible character of N, then the number | Irr ( G | θ ) | of irreducible characters of G over θ is always greater than or equal to the number k p ′ ( G / N ) of conjugacy classes of G / N consisting of p ′ -elements. In this paper, we investigate when there is equality.
Finite Group Elements where No Irreducible Character Vanishes
1999
AbstractIn this paper, we consider elements x of a finite group G with the property that χ(x)≠0 for all irreducible characters χ of G. If G is solvable and x has odd order, we show that x must lie in the Fitting subgroup F(G).
Real constituents of permutation characters
2022
Abstract We prove a broad generalization of a theorem of W. Burnside about the existence of real characters of finite groups to permutation characters. If G is a finite group, under the necessary hypothesis of O 2 ′ ( G ) = G , we can also give some control on the parity of multiplicities of the constituents of permutation characters (a result that needs the Classification of Finite Simple Groups). Along the way, we give a new characterization of the 2-closed finite groups using odd-order real elements of the group. All this can be seen as a contribution to Brauer's Problem 11 which asks how much information about subgroups of a finite group can be determined by the character table.